Assignment 10.

This homework is due Tuesday 12/07/2010.

There are total of 22 points in this assignment. 19 points is considered 100%. If you go over 19 points, you will get over 100% for this homework and it will count towards your course grade.

Collaboration is welcome. If you do collaborate, make sure to write/type your own paper.

This assignment covers section 7.1.

(1) [3pt] (Exercise 7.1.8) If $f \in \mathcal{R}[a, b]$ and $|f(x)| \leq M$ for all $x \in [a, b]$, show that

$$|\int_{a}^{b} f| \le M(b-a)$$

- (2) (a) [3pt] (Exercise 7.1.9) If $f \in \mathcal{R}[a, b]$ and if $(\dot{\mathcal{P}}_n)$ is any sequence of tagged partitions of [a, b] such that $\|\dot{\mathcal{P}}_n\| \to 0$ as $n \to \infty$, prove that $\int_a^b f = \lim_{n \to \infty} S(f; \dot{\mathcal{P}}_n).$
 - (b) [3pt] (Exercise 7.1.10) Let g(x) = 0 if $x \in [0, 1]$ is rational and g(x) = 1/x if $x \in [0, 1]$ is irrational. Prove that $g \notin \mathcal{R}[0, 1]$. However, show that there exists a sequence $(\dot{\mathcal{P}}_n)$ of tagged partitions of [a, b] such that $\|\dot{\mathcal{P}}_n\| \to 0$ as $n \to \infty$ and $\lim_{n \to \infty} S(g; \dot{\mathcal{P}}_n)$ exists.
- (3) (a) [3pt] (Exercise 7.1.11) Suppose that f is bounded on [a, b] and that there are two sequences of tagged partitions of [a, b] such that $\|\dot{\mathcal{P}}_n\| \to 0$ and $\|\dot{\mathcal{Q}}_n\| \to 0$ as $n \to \infty$, but such that

$$\lim_{n \to \infty} S(f; \mathcal{P}_n) \neq \lim_{n \to \infty} S(f; \mathcal{Q}_n).$$

Show that f is not in $\mathcal{R}[a, b]$.

(b) [3pt] (Exercise 7.1.12) Consider the Dirichlet function, defined by f(x) = 1 for $x \in [0, 1]$ rational and f(x) = 0 for $x \in [0, 1]$ irrational. Show that f is not Riemann integrable on [0, 1]. (Hint: You can use problem 3a.)

- (4) (a) [4pt] (Exercise 7.1.13) Suppose that $f : [a, b] \to \mathbb{R}$ and that f(x) = 0 except for a finite number of points c_1, \ldots, c_n in [a, b]. Prove that $f \in \mathcal{R}[a, b]$ and that $\int_a^b f = 0$. (Hint: In a given partition, how many intervals may have a tag with nonzero value of f?)
 - (b) [3pt] (Exercise 7.1.14) If $g \in \mathcal{R}[a, b]$ and if f(x) = g(x) except for a finite number of points in [a, b], prove that $f \in \mathcal{R}[a, b]$ and that $\int_{a}^{b} f = \int_{a}^{b} g$. (Hint: You can use problem 3b applied to f g.)

 $\mathbf{2}$